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In contrast to the rapid decrease predicted by conventional

C> !'-theory, the magnetostriction X1lO of iron has a large maximum just

below the Curie temperature. We propose a mechanism based on the

"* fact that an ellipticity in the quasi-particle spectrum permits a

lowering of the free energy by distortion; an equivalent mechanism

I jarises from the anisotropic magnon-phonon interaction near the zone

SIboundary. This latter interaction is large at temperatures such

that magnon renormalization (due to magnon-magnon interaction)

lowers the magnon spectrum to degeneracy with phonons at the zone

O edge. The degeneracy temperature agrees well with the temperature

Sof the maximum in iron. Adding silicone raises impurity states

S* from the phonon spectrum and thence lowers the degeneracy tempera-

ture, but increases the range of temperature over which near-

degeneracy occurs; this agrees with the observed shift and broaden-

ing of the X1 0 0 peak. The degeneracy does not occur in nickel,

nor does the X1 0 0 peak. The mechanism also predicts a monotonically

decreasing XIII of the opposite sign to X10, as observed in iron.

*Supported in part by the Office of Naval Research.
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I. INTRODUCTION

The conventional magnetoelastic coupling theory of mag-

netostrictionI' 2 and the observations of Tatsumoto and Okamoto 3 '

on iron are in puzzling disagreement. The magnetoelastic coupl-

ing theory predicts that the magnetostriction of ferromagnets

should fall monotonically to zero with increasing temperature.

In contrast the magnetostriction constant XI00 of iron, shown

in Fig. la, increases with increasing temperature, exhibiting a

minor maximum at about one-fifth of the Curie temperature and a

major, large maximum just below the Curie temperature. Addition

of small fractions of silicon shifts the major maximum to lower

temperature and broadens it. The second magnetostriction con-

stant X1 1 1 , shown in Figure lb, falls monotonically to zero.,

Finally, the peak in kIO0 is absent in nickel.

In this paper we propose a mechanism which accounts

qualitatively for the magnitude and location of the high-tempera-

ture maximum of XlO0 in iron, for the shift and broadening of the

maximum with the addition of silicon, for the absence of the ef-

fect in nickel, and provides criteria for the presence of the

effect in other materials. Furthermore, the theory properly pre-

dicts the monotonic behavior of kill and the fact that 4lll and

X100 are of opposite sign.

The mechanism depends on the existence of an asymmetry in,

the excitation spectrum of the system, this asymmetry being deter-

mined by the axis of the magnetization. For clarity we first

illistrate the effect by assuming a simple eccentricity of the

spin-excitation (magnon) spectrum, such as results, for instance,

from the dipolar interaction of the spins. 4
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Such an eccentricity is indicated schematically in Fig. 2,

where the surfaces of constant frequency of the excitations are

shown as elliptical.

The free energy of the crystal is the sum of individual

contributions F(;;) from the individual modes. The product of

F(R,T) and of the density of modes in reciprocal space, v
(20)3

defines a scalar field in reciprocal space. This free energy

density must be integrated over the Brillouin zone to compute

the free energy of the crystal.

The surfaces of constant free energy density coincide

with the surfaces of constant frequency of the modes, and an

eccentricity of the latter implies a similar eccentricity pf the

former.

If the crystal is distorted, two effects must be-considered.

First, the boundaries of the Brillouin zone over which the free

energy density is to be integrated, are shifted. And secQnd, be-

cause of the change in interatomic distance the w(k) dependence

may be altered, in turn changing the free energy density field.

In the presence of an eccentricity the total free energy

is decreased by a shift of the Brillouin zone boundary to exclude

a region of reciprocal space corresponding to high free energy

density in favor of another region of lower free energy density.

This effect is indicated schematically in Fig. 2. Distortion of

the Brillouin zone boundary corresponds to an inverse distortion

of the crystal in real space, and thence to magnetostriction.

The model calculation carried out in Section 2 indicates that

the second effect (the dependence of w(kI) on strain) is somewhat

smaller than the zone boundary effect, and that both effects are
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of the same sign. Both effects are shown in Fig. 3, where the

zone boundary effect is designated as a "surface" effect, and

the shift in the frequencies throughout the zone is designated

as the "volume" effect.

As indicated in Fig. 3, the magnetostriction resulting from

a single. eccentricity would be in qualitative agreement with the

observations in iron if we were to choose the eccentricity opposite

in sign and eight times the magnitude of that resulting from dipolar

interactions. However, no plausible source of that type of eccen-

tricity, with the required magnitude, is apparent to us. Conse-

quently, as an alternative mechanism, we shall show in Section 3

that the magnon-phonon interaction near the Brillouin zone bound-

ary produces an asymmetry in the excitation spectra which is equi-

valent in its effect to a simple eccentricity. The magnon-phonon

interaction is itself sharply temperature dependent, becoming

appreciable only when the magnon-magnon interaction renormalizes

the magnon spectrum to lower the magnon frequencies so that they

become degenerate with the phonons ne.ar the zone edge. This

degeneracy temperature is just below the Curie temperature in

iron. The resultant contribution to X100 is therefore very small.

except in the neighborhood of the degeneracy temperature, leading

to a strong maximum just below the Curie temperature, qualitatively

similar to that observed in iron.

The systematics of the shift and change of shape of the X100

maximum with addition of impurities, and the criteria for the pre-

sence of the maximum in other materials, then follow from the

relative magnitudes of the unrenormalized magnon and phonon ener-

gies in these materials,, and from the resultant possibility of

magnon-phonon degeneracy near the zone edge.
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II. SIMPLE ECCENTRICITY MODEL

Without specifying the source of the eccentricity at this

stage, and simply to illustrate the effect in its most elementary

form, we first assume that the magnon spectrum can be represented

by

W( = w (7,j) + AYM sin2 O (I)
0

where w(k,s) is the frequency of a mode of wave vector i in an

arbitrarily distorted crystal (indicated by the strain tensor 1),

A is an undetermined dimensionless eccentricity conttant,

YM M - H is inserted to insure that the eccentricity vanish in
2mc

the symmetric paramagnetic state, and 0 is the angle betweenI and

L. This simple eccentricity cannot be valid at very low 1, where

it would lead to negative wC3',€), but the modes near the Brillouin

zone boundary are of principal importance.

The dependence of Wo(MI) on both k and 1 is taken from the

Green function theory o'f the Heisenberg model. Two versions of

that theory have been given, by Tahir-Kheli and ter Haar, 5 and by

H. Callen. 6  Tahir-Kheli and ter Haar find that the magnon energies

are equalto simple spin wave energies multiplied by the fractional

magnetization m(T). The theory of Callen, while giving a somewhat

more complicated renormalization which agrees with the Dyson result

at low temperature, is not radically different from the magnetization

renormalization at high temperatures. For simplicity, then, and

because we are interested in the high temperature region, we Simply

adopt the magnetization renormalization. Then, assuming nearest

neighbor interaction, the frequency (at a fixed point i in recipro-

cal space) becomes
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hwo(Up) - 2JSm(T)(z - E e (2)6

- 2JSm(T)(z - • e o)+ 2JSm(T) E K'€.8 sin o
6 0 80

where 8 designates the vectors to the nearest neighbors (of which

there are z), and 6 designates these vectors in the unstrained

0

crystal.

The free energy of the system of magnons is

F E F E I hw(K) + E ln(l-e-hW(k)) (4)
K K K

and we are interested in the free energy difference AF -F(=)-

F(s = 0) in the strained and unstrained crystal. Furthermore we

are interested only in those terms in AF which contribute to the

magnetostriction constants X100 and XIl1' in that they involve

both the direction of magnetization (or 0) and the strain 1;

denoting these terms in AF by AF', we easily find

B F 2 F)
6F' =T odo 8w 8w dT

BW0 W o S 9 ~
6 -B.Z.

hf[½+ n(-,T))-odor -O .f ng (1+nz)6w. 6w,dT (6)
SB.Z.

where

8wO = AYM sin2 0 (7)

2J. - 2,,<s> Z I-?- to sin "•0.Ito ,
60

n(w,T) = Ce£e( 1)-l]") (9)
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and where the first integral is over the differential volume

between the strained and unstrained zones, whereas the second

integral is over the volume of the unstrained zone. The first

term in Eq. (6) corresponds to the surface term shown in Fig. 2.

This term has a zero-point value even when the Bose occupation

numbers n(w,T) are all zero. The second term in Eq. (6) describes

the effect of the change of excitation frequencies, and hence of

the free energy density, throughout the zone when the crystal is

strained. A third term, corresponding to the change in density

of states within the zone, has been omitted because, beingfully

symmetric, it makes no contribution to X100 or Xil* Calculation

of the integrals is simplified by expanding strains, angular fac-

tors, and wave-vector components in Kubic Harmonics and extracting

the fully symmetric products. We have carried out such an integra-

tion for a simple cubic lattice, performing the numerical integra-

tions on the NOL 7090. A check on the calculations is provided

by the exact cancellation of volume and surface terms of symmetry

r=, required by the invariance of k'f in the coordinate system

moving with the modes. Then, minimizing the sum of AF' and the

elastic strain energy, one finds the equilibrium strains, or

magnetostriction. The resultant magnetostriction is shown in

Fig. 3, in which we show the portion of X100 ascribable to the

surface and volume terms in Eq. (6). The temperature dependence.

of m(T) has been taken from the empirical magnetization curves of

Terry,7 and the elastic constants from the extrapolated data of

Rayne and Chandrasekhar. 8  These are plotted in Fig. 4. It will

be noted that the decrease in clI(T)-oI 2 (T) accounts for most of
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the broad X peak on the simple eccentricity model. The volume
100

contribution to X is zero at T = 0 where all occupation numbers

vanish, and it falls-to zero again at Tc because of the renormaliza-

tion of magnon energies (Eq. (8)). The surface contribution has a

large zero point contribution, and it then increases with increas-

ing temperature as the modes near the zone boundary become occupied.

The single adjustable constant appearing in the results is the

eccentricity constant A of Eq. (1); it has been chosen as A -16w

in Fig. 3, so that the theoretical XI00 coincides with the measured

value extrapolated to OK. For comparison, the value of A corre-

sponding to the Holstein-Primakoff4 spectrum (i.e., the dipolar-

induced eccentricity) is +2TT.

The corresponding theoretical value of the shear magneto-

striction Xlll is properly opposite to X 00 in sign, but its

magnitude is only one third of the experimental value at OK, and

it drops off monotonically but too slowly with increasing temperature.
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III. MAGNON-PHONON INTERACTION

We now consider a specific mechanism which produces an

asymmetry of the required magnitude in the excitation spectrum

of a ferromagnet. Although this symmetry is more complex than

the simple eccentricity considered previously, its effect is

qualitatively similar. The mechanism to be considered arises

from magnon-phonon interaction.

The magnon and phonon. spectra each approach the Brillouin

zone boundary with zero normal slope, but the energies vary

considerably over the face of the zone. The phonon frequencies

have been measured by G. G. E. Low, 9 who finds hwp = 0.48xi0"1 3

ergs at the [111] vertex; the phonon spectrum in this direction

is shown in Fig. 5. The [111) vertex is the principal region of

low magnon energy on the zone surface, and, as will develop sub-

sequently, is therefore of particular interest to us. The un-

renormalized (low temperature) magnon energies, given by Eq. (2),

can be obtained sufficiently accurately from the Curie temperature

and the Green function theory,5' 6 whence hw* = 1.50x10"1 3 ergs at
m

the [111) vertex in iron. The magnon spectrum is also shown in

Fig. 5.

At low temperatures there is virtually no magnon-phonon

interaction in iron except in the region of the crossing of the

two spectra, deep within the zone. However, as the temperature

* increases, the spin waves energies renormalize. As indipated pre-

viously, at high temperature this renormalization is merely a 6

multiplication of the spin wave frequencies by the fractional

magnetization m(T). Thus the magnon spectrum of iron becomes
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degenerate with the phonon spectrum at the zone edge at that

temperature T for which
0 @

m(Tp) =Wp/Wm (if wp W). (10)

In actuality the phonon energies also renormalize, although probably

to a lesser extent than the magnons. Accordingly, and in the ab-

sence of a quantitative theory, we shall neglect this effect.

Because of the magnetoelastic coupling,the phonon and mag-

non spectra mix, producing new modes displaced upward and down-

ward by frequency shifts ±8w. This spectral distortion then in-
0

duces the zone boundary distortion somewhat as in the previous

magnon spectrum ellipticity model.

The interaction term between magnons and phonons is dictated

by symmetry considerations, and in the classical field representa-

tion can be written in the form1 0

p f[BijmnMmMn-ijmnkA (11)

mp [B' L. A2M].ii d?=m brk br A(11)

where the B's and D's are phenomenological coupling constants.

The effect of the first term is dominant at low wave vector,

where it gives rise to the conventional theory of magnetostriction

and to the magnon-phonon crossing interaction, investigated most

fully by Schlomann.II The second term in the integrand of Eq. (11)

vanishes at zero wave vector, but strongly dominates near the

zone edge. The order of magnitude of this term has been estimated

by Kaganov and Tsukernik;I0 because it arises from a modulation of

the exchange integral they estimate it to be of the order of Ja 3 (ka)2.

At the zone boundary, where Kau r, this would give a magnon-phonon

interaction of approximately 2x10"1 3 ergs/ion, dominating the B term



by two orders of magnitude? This estimated magnon-phonon inter-

action would be as large, or larger, than the phonon energy itself,

which would lead to an instability of the interacting spectra, and

"a phase transition. But the estimate of Kaganov and Tsukernik is

"a very rough one, and we shall assume only that the magnon-phonon

matrix element for modes near the zone boukAdary is hwi, where wi

is less than but of the same order as the phonon frequency Wp.

The displaced frequencies of the interacting magnon and

phonon modes are then determined by the secular equation

Wm W Wi
= 0 (12)

w. w -W
1 p

The two roots are

m + 8w
W= (13)

+ 8w
p-m

where the upper sign is to be taken if Wm >W p and the lower sign

if *m<Wp, and where

8w - *WmWpI+ 1[(Wm-wp ) 2 +4iw 212  (14~)

Thus the displacement of the modes reaches a maximum value of W

when Wm = wp, and it falls to !I when Wm-Wp = + • Wi.
2 2

The interaction matrix element wi is certainly strongly

dependent on the angle between the wave vector of the modes and

the magnetization, as has been shown at the cross-over region at

low I by Schl6mann.II It is obvious by symmetry that a spin wave

propagating along the magnetization cannot couple 'to a longitudinal

phonon. However, the coupling can be large for modes propagating
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perpendicular to the magnetization direction. We thus summarize

the above considerations by assuming that 8w(9) is a function of

the angle B between I and M:

6W(9) = g(wm-w p) sin 8 (15)

where g is of the order of Wp, falling to half its value when

w m-w +' g(O).m p - 2

Again the free energy of the crystal is decreased by a

distortion of the Brillouin zone, excluding regions of small

splitting in favor of regions of large splitting. As in Eq. (6)

the surface contribution to the change in free energy is

AF" = f[F (w m+6w)+F (w +6w)1dT (16)

At the degeneracy temperature this change in free energy becomes

n' (1+n-) g2 sin2 dT (17)

Comparison of this equation with the surface term in Eq. (6) shows

that the same value of magnetostriction at T will be obtained ifp
2

g and A are related by

02
A O . "phwmg

[l-exp(-. hp )JYM W (18)

Consequently our previous result that a value of A = -167T was

required to fit the value of Xl00 at Tp implies that this fit

will be obtained with hg ^ 10"14 ergs. This required value

actually is considerably less than the value estimated from the

magnon-phonon matrix element.

We first estimate the position and shape of the peak in

pure irran, and then discuss the effect of silicon alloying.
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The peak temperature, from Eq. (i0), and Fig. 5, is that tem-

perature at which m(T ) = From the experimental magnetiza-S1.1ý

tion curve of Fig. 4 we find T = 0.96 Tc V 10000K. This figure,

somewhat higher than the experimental value, is reduced by the

observation that both the phonon and magnon frequencies vary

somewhat over the zone surface. Hence magnon-phonon degeneracy

is reached at different temperatures at different points on the

surface. The observed maximum therefore should be broadened and

depressed from our initial theoretical estimate.

In addition to this "geometrical" broadening, at least

two other effects broaden the magnetostriction maximum. At high

temperatures the lifetimes of the magnons and phonons b~come

short, so that the excitations are themselves broadened consider-

ably. Furthermore there is an intrinsic breadth of the maximum

which arises from the fact that the magnons and phonons interact

even at temperatures other than T .

We recall that 6w is a maximum at Tp, and that it falls to

half its maximum at the temperatures T If determined by

m( )= -o = m(Tp) • i(iS
m(" m() (+i ' 8)

m m
If we assume arbitrarily that wij¶p, then m(TP) ' 0.8 and

m(T+t) 1.0, whence T.j is roughly 800 0 K and of course

T½ I 2Tc = 10430K. Like the peak temperature, these "half width

points are again too high, but the theory predicts correctly that

the line will be broadened asymmetrically because of the shape of

the magnetization curve, with the low temperature rise flatter

than the sharp high temperature drop-off.
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The magnon-phonon interaction mechanism also accounts

naturally for the considerable effect of small additions of

silicon. The position of the magneto-striction peak is de-

termined by the phonon modes at the zone boundary, and these

modes are radically perturbed by the addition of light im-

purities. In fact the tendency of such impurities is to

split localized modes off the top of the phonon band; even

if such localization is not accomplished, the modes of short

wave-length (X v a) are shifted upward in frequency. Conse-

quently, the addition of silicon shifts the magnetostriction

peak to lower temperatures, and broadens it by moving the

peak to a region of smallerimT)I. These effects appear inpeaBT

Fig. 1.

If wo is less than w , rather than greater as in iron,m p

no degeneracy temperature occurs. Magnon-phonon interaction

will then give a contribution to the magnetostriction at zero

temperature if W- W•Ui, and this contribution will decrease

with increasing temperature. This appears to be the case in

nickel. Hard materials (high wp ) with low Curie temperatures

should not show a high-temperature magnetostriction maximum.

The optimum condition for the observation of "he high-

temperature magnetostriction maximum is that W m be perhaps twicem

to five times as large as wp. For if wvm is enormously larger

than w the degeneracy temperature becomes practically identical

to the Curie temperature, and the peak becomes very narrow. The

situation in iron is apparently very close to the optimum

conditions.



- 15 -

ACKNOWLEDGMENT

We are grateful for the assistance of Miss Ann Penn and

to Neil McElroy in programming the calculations.

REFERENCES

1. C. Kittel and J. H. Van Vleck, Phys. Rev. 118, 1231 (1960).

2. E. R. Callen and H. B. Callen, Phys. Rev. 12., 578 (1963).

3. E. Tatsumoto and T. Okamoto, J. Phys. Soc. Japan 14_, 1588 (1959).

4. T. Holstein and H. Primakoff, Phys. Rev. J8, 1098 (1940).

5. R. A. Tahir-Kheli and D. ter Haar, Phys. Rev. =2, 88 (1962).

6. H. Callen, Phys. Rev. 1,29, (1963).

7. E. M. Terry, Phys. Rev. 10, 133 (1910).

8. J. A. Rayne and B. S. Chandrasekhar, Phys. Rev. 12a, 1714 .h1961).

9. G. G. E. Low, Proc. Phys. Soc. 72, 479 (1962).

10. M. L. Kaganov and V. M. Tsukernik, J. Exptl. Theoret. Phys.

(U.S.S.R.) 36, 224 (1959); translation in Soviet Phys.--JETP

.3I (9), 151 (1959).

11. E. Schl6mann, J. Appl. Phys. UI, 1647 (1960).



- 16 -

FIGURE CAPTIONS

Fig. la. Magnetostriction constant % vs temperature, of iron

and silicon iron, according to E. Tatsumoto and T. Okamoto.

J.' Phys. Soc. Japan ]A, 1588 (1959).

Fig. lb. Magnetistriction constant Xil vs temperature, of iron

and silicon iron, according to Tatsumoto and Okamoto.

Fig. 2. Zone boundary distortion effect.

An ellipticity in the magnon spectrum with respect to the

magnetization direction creates an asymmetry in the free

energy density field. The free energy is then lowered by

extending the zone boundaries to include regions of low

free energy and density and contracting the boundaries to

exclude the high energy regions.

Fig. 3. Magnetostriction constant X100 as a function of tempera-

ture arising from the simple eccentricity model. The

ellipticity coefficient has been adjusted to reproduce

the experimental magnetostriction extrapolated to 00 K.

The "surface" contribution, as indicated in Fig. 2, and

the "volume" term, due to the change in energy of the

magnons throughout the zone when the crystal is strained,

are--shown separately, as is their sum and the experimental

curve of Fig. 1.

Fig. 4. The experimental reduced magnetization of iron as a func-

tion of temperature, according to E. M. Terry, Phys. Rev. 30,

133 (1910). The elastic stiffness constants c (T) - c (T)
11 12

and c4 4 (T) of iron have been measured by J. A. Rayne and

B. S. Chandrasekhar, Phys. Rev. , 1714 (1961) fr6m
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FIGURE CAPTIONS l Cont.

4.20K to 500 0 K. K. Nakamura, Sci. Rept. Tohoku Univ. 2•,

364 (1955-57) measured the compliance constants of iron

in the range 295 0 K<T<7950K. The stiffness constants em-

ployed by us are the data of Rayne and Chandrasekhar

extrapolated parallel to the measurements of Nakamura

(converted).

Fig. 5. Phonon energy is a function of propagation vector in the

[11i direction in iron, according to G. G. E. Low, Proc.

Phys. Soc. 2., 479 (1962). The unrenormalized (O°K)

magnon energy vs propagation vector in the same direction

in reciprocal space is also shown.
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